Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 969: 176453, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408597

RESUMO

Nonalcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease, and no drugs have been approved for its therapy. Among plant-derived molecules, phenolic compounds of extra virgin olive oil like tyrosol (Tyr) had demonstrated multiple beneficial actions for liver health, including the modulation of inflammation in fibrosis. This study aims at assessing the protective effect and mechanism of Tyr in invitro and in vivo models of NASH, with a focus on the hepatic immune microenvironment and extrahepatic manifestations. The effect of Tyr was evaluated in cellular models of NASH, obtained by co-culturing palmitic and oleic acid-treated HepG2 cells with THP1-derived M1 macrophages and LX2 cells, and in a mouse model of NASH induced by a high fructose-high fat diet combined to CCl4 treatment. In vitro Tyr reduced fatty acid (FA) accumulation in HepG2 cells and displayed a beneficial effect on LX2 activation and macrophage differentiation. In vivo, beside reducing steatosis and fibrosis in NASH animals, Tyr prevented inflammation, as demonstrated by the reduction of hepatic inflammatory foci, and immune cells like CD86+ macrophages (p < 0.05), CD4+ (p < 0.05) and T helper effector CD4+ FoxP3- CD62L-lymphocytes (p < 0.05). Also, the prooxidant enzyme NOX1 and the mRNA expression of TGF-ß1 and IL6 (p < 0.05) were reduced by Tyr. Notably, in Tyr-treated animals, a significant increase of CD4+ FoxP3+ Treg cells (p < 0.05) was observed, involved in regenerative pathways. Moreover, Tyr attenuated the fatigue and anxious behavior observed in NASH mice. In conclusion, Tyr effectively reduced NASH-related steatosis, fibrosis, oxidative stress, and inflammation, displaying a beneficial effect on the hepatic immune infiltrate, indicating its possible development as a therapeutic agent for NASH due to its multifaceted mechanism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Inflamação/metabolismo , Fibrose , Dieta Hiperlipídica/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Camundongos Endogâmicos C57BL , Cirrose Hepática/patologia , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003640

RESUMO

Liver fibrosis is a common and reversible feature of liver damage associated with many chronic liver diseases, and its onset is influenced by sex. In this study, we investigated the mechanisms of liver fibrosis and regeneration, focusing on understanding the mechanistic gaps between females and males. We injected increasing doses of carbon tetrachloride into female and male mice and maintained them for a washout period of eight weeks to allow for liver regeneration. We found that male mice were more prone to developing severe liver fibrosis as a consequence of early chronic liver damage, supported by the recruitment of a large number of Ly6Chigh MoMφs and neutrophils. Although prolonged liver damage exacerbated the fibrosis in mice of both sexes, activated HSCs and Ly6Chigh MoMφs were more numerous and active in the livers of female mice than those of male mice. After eight weeks of washout, only fibrotic females reported no activated HSCs, and a phenotype switching of Ly6Chigh MoMφs to anti-fibrogenic Ly6Clow MoMφs. The early stages of liver fibrosis mostly affected males rather than females, while long-term chronic liver damage was not influenced by sex, at least for liver fibrosis. Liver repair and regeneration were more efficient in females than in males.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Masculino , Camundongos , Feminino , Animais , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Fígado/patologia , Fenótipo , Tetracloreto de Carbono/toxicidade
3.
Adv Healthc Mater ; 12(29): e2301650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37590033

RESUMO

Liposomes play an important role in the field of drug delivery by virtue of their biocompatibility and versatility as carriers. Stealth liposomes, obtained by surface decoration with hydrophilic polyethylene glycol (PEG) molecules, represent an important turning point in liposome technology, leading to significant improvements in the pharmacokinetic profile compared to naked liposomes. Nevertheless, the generation of effective targeted liposomes-a central issue for cancer therapy-has faced several difficulties and clinical phase failures. Active targeting remains a challenge for liposomes. In this direction, a new Super Stealth Immunoliposomes (SSIL2) composed of a PEG-bi-phospholipids derivative is designed that stabilizes the polymer shielding over the liposomes. Furthermore, its counterpart, conjugated to the fragment antigen-binding of trastuzumab (Fab'TRZ -PEG-bi-phospholipids), is firmly anchored on the liposomes surface and correctly orients outward the targeting moiety. Throughout this study, the performances of SSIL2 are evaluated and compared to classic stealth liposomes and stealth immunoliposomes in vitro in a panel of cell lines and in vivo studies in zebrafish larvae and rodent models. Overall, SSIL2 shows superior in vitro and in vivo outcomes, both in terms of safety and anticancer efficacy, thus representing a step forward in targeted cancer therapy, and valuable for future development.


Assuntos
Lipossomos , Neoplasias , Animais , Lipossomos/química , Peixe-Zebra , Sistemas de Liberação de Medicamentos , Fosfolipídeos , Polietilenoglicóis/química
4.
Biomed Pharmacother ; 157: 114014, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379119

RESUMO

Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.


Assuntos
MicroRNAs , NADPH Oxidases , Camundongos , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , MicroRNAs/metabolismo , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/patologia , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia
5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142565

RESUMO

Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/etiologia , Feminino , Humanos , Hepatopatias Alcoólicas/patologia , Neoplasias Hepáticas/etiologia , Masculino , Hepatopatia Gordurosa não Alcoólica/patologia
6.
Mar Drugs ; 20(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36135761

RESUMO

Recently, some preclinical and clinical studies have demonstrated the ability of brown seaweeds in reducing the risk factors for metabolic syndrome. Here, we analyzed the beneficial effect of a nutraceutical formulation containing a phytocomplex extracted from seaweeds and chromium picolinate in animal models of liver steatosis of differing severities (rats with non-alcoholic fatty liver disease (NAFLD) and its complication, non-alcoholic steatohepatitis (NASH)). This treatment led to a significant drop in hepatic fat deposition in both models (p < 0.01 vs. untreated animals), accompanied by a reduction in plasma inflammatory cytokines, such as interleukin 6, tumor necrosis factor α, and C reactive protein, and myeloperoxidase expression in liver tissue. Furthermore, a modulation of the molecular pathways involved in lipid metabolism and storage was demonstrated, since we observed the significant reduction of the mRNA levels of fatty acid synthase, diacylglycerol acyltransferases, the sterol-binding protein SREBP-1, and the lipid transporter perilipin-2, in both treated NAFLD and NASH rats in comparison to untreated ones. In conclusion, this nutraceutical product was effective in reducing liver steatosis and showed further beneficial effects on hepatic inflammation and glycemic control, which were particularly evident in rats characterized by a more severe condition, thus representing a therapeutic option for the treatment of NAFLD and NASH patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Alga Marinha , Animais , Proteína C-Reativa/metabolismo , Suplementos Nutricionais , Diglicerídeos/metabolismo , Ácido Graxo Sintases , Inflamação/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Perilipina-2/metabolismo , Peroxidase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Alga Marinha/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Esteróis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Cells ; 11(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011625

RESUMO

Pregnane X receptor (PXR), a nuclear receptor known for modulating the transcription of drug metabolizing enzymes and transporters (DMETs), such as cytochrome P450 3A4 and P-glycoprotein, is functionally involved in chronic liver diseases of different etiologies. Furthermore, PXR activity relates to that of other NRs, such as constitutive androstane receptor (CAR), through a crosstalk that in turn orchestrates a complex network of responses. Thus, besides regulating DMETs, PXR signaling is involved in both liver damage progression and repair and in the neoplastic transition to hepatocellular carcinoma. We here summarize the present knowledge about PXR expression and function in chronic liver diseases characterized by different etiologies and clinical outcome, focusing on the molecular pathways involved in PXR activity. Although many molecular details of these finely tuned networks still need to be fully understood, we conclude that PXR and its modulation could represent a promising pharmacological target for the identification of novel therapeutical approaches to chronic liver diseases.


Assuntos
Hepatopatias/metabolismo , Receptor de Pregnano X/metabolismo , Animais , Doença Crônica , Feminino , Humanos , Masculino , Modelos Biológicos , Receptor de Pregnano X/química , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...